M1.(a) (i) calcium oxide
in either order
carbon dioxide
accept correct formulae
(ii) $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 C O}(\mathrm{g})$ allow multiples
(iii) 210 (tonnes)
award 3 marks for the correct answer with or without working allow ecf for arithmetical errors if answer incorrect allow up to $\mathbf{2}$ marks for any of the steps below:
$160 \rightarrow 112$
$300 \rightarrow 112 / 160 \times 300$
or
moles $\mathrm{Fe}_{2} \mathrm{O}_{3}=1.875\left(\times 10^{6}\right)$ or $300 / 160$
moles of $\mathrm{Fe}=3.75\left(\times 10^{6}\right)$ or $2 \times$ moles $\mathrm{Fe}_{2} \mathrm{O}_{3}$
mass $\mathrm{Fe}=$ moles $\mathrm{Fe} \times 56$
105 (tonnes) scores 2 (missing 1:2 ratio)
420 (tonnes) scores 2 - taken M_{r} of iron as 112
(b) (i) aluminium is more reactive than carbon or carbon is less reactive than aluminium
must have a comparison of reactivity of carbon and aluminium
accept comparison of position in reactivity series.
(ii) (because) aluminium ions are positive ignore aluminium is positive
and are attracted / move / go to the negative electrode / cathode
where they gain electrons / are reduced / $\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$ accept equation or statements involving the wrong number of electrons.
(iii) (because) the anodes or (positive) electrodes are made of carbon / graphite
oxygen is produced (at anode)
which reacts with the electrodes / anodes
do not accept any reference to the anodes reacting with oxygen from the air
equation $\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$ gains 1 mark (M3)

M2.(a) left hand: (conical) flask
do not accept round bottomed
flask or container which is not a flask
right hand: beaker / trough
accept plastic box
(b) (i) 157
(ii) all calcium carbonate used up or reaction stopped do not accept all acid used up
(c) (i) $0.007(272727 \ldots)$
correct answer with or without working gains 2 marks if answer incorrect, allow (0.32 / 44) for 1 mark
(ii) $0.007(272727 \ldots)$
allow ecf from (c)(i)
(iii) $\left(M_{r}=\right.$ mass $/$ moles $\left.=1 / 0.00727 \ldots\right)=137.5$ or 138 allow ecf from (c)(ii)
if use 0.00943 moles then $=106$
if use 0.007 allow 143 (142.857)
(iv) (138) - $60(=78)$

23/85
$(78 / 2)=39$
potassium
sodium / rubidium
identity of metal ecf on $A_{\text {, }}$, but must be Group 1
If no working max 1 mark
(d) (i) (relative atomic mass) would decrease
because the mass lost greater
so moles carbon dioxide larger or moles metal carbonate greater
(ii) no change
so the amount carbon dioxide lost is the same

1
[17]

M3.(a) copper has delocalised electrons
accept copper has free electronsignore sea of electrons or mobile electrons
(electrons) which can move through the metal / structure allow (electrons) which can carry a charge through the metal / structure
(b) (i) $\quad\left(M_{,}, \mathrm{FeCl}_{3}=\right) 162.5$
correct answer with or without working gains $\mathbf{3}$ marks can be credited from correct substitution in step 2
or
2 (moles of) $\mathrm{FeCl}_{3}=325$
or
$112 \rightarrow 325$

$$
\begin{aligned}
& \frac{11.20}{56} \times 162.5 \\
& \text { allow ecf from step } 1 \\
& \text { accept } \frac{325}{112} \times 11.2
\end{aligned}
$$

$$
=32.5
$$

(ii) 74.8
accept 74.77-75
accept ecf from (b)(i)
if there is no answer to part(i)
or
if candidate chooses not to use their answer then accept 86.79-87

M4.(a) (i) CH_{4}
allow $\mathrm{H}_{4} \mathrm{C}$
do not allow lower-case h do not allow superscript
(ii) single
(iii) alkanes
(b) (i) carbon / C
any order
hydrogen / H
allow phonetic spelling

```
sulfur / sulphur / S
```

(ii) air / atmosphere
(iii) acid rain
damages trees / plants or kills aquatic organisms or damages buildings / statues or causes respiratory problems
allow harmful to living things
(c) carbon / C
accept soot / particulates / charcoal
(d) any four from:

- (supports hypothesis) because when the fuel contained more carbon the temperature of the water went up more / faster (in 2 minutes)
- (does not support hypothesis as) temperature change per gram decreases as the number of carbons increases
- (does not support hypothesis) because the more carbon in the fuel the more smoke or the dirtier / sootier it is
- only tested hydrocarbons / alkanes / fuels with between 5 and 12 carbon atoms
- valid, justified, conclusion
accept converse statements
(e) (i) 0.15
correct answer with or without working gains 2 marks if answer incorrect, M, carbon dioxide = 44 gains 1 mark allow $0.236 / 0.24$ / 0.2357142 (ecf from M_{r} of 28) for 1 mark
(ii) $0.4(0)$
(iii) $\mathrm{C}_{3} \mathrm{H}_{8}$
correct formula with or without working scores 2 marks
$0.15 / 0.05=3$
allow ecf from (e)(i)
and
$0.4 / 0.05=8(1)$
allow ecf from (e)(ii)
allow 1 mark for correct empirical formula from their values
If use 'fall-back-values:
$0.50 / 0.05=10$
and
$0.20 / 0.05=4$
1 mark
$\mathrm{C}_{4} \mathrm{H}_{10}$
1 mark
if just find ratio of C to H using fall-back values, get $\mathrm{C}_{2} \mathrm{H}_{5}$ allow 1 mark

